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Mitoxantrone (MX) is a robust chemotherapeutic with well-characterized applications in treating certain leu-
kemias and advanced breast and prostate cancers. The canonical mechanism of action associated with MX is its 
ability to intercalate DNA and inhibit topoisomerase II, giving it the designation of a topoisomerase II poison. 
Years after FDA approval, investigations have unveiled novel protein-binding partners, such as methyl-CpG- 
binding domain protein (MBD2), PIM1 serine/threonine kinase, RAD52, and others that may contribute to the 
therapeutic profile of MX. Moreover, recent proteomic studies have revealed MX’s ability to modulate protein 
expression, illuminating the complex cellular interactions of MX. Although mechanistically relevant, the dif-
ferential expression across the proteome does not address the direct interaction with potential binding partners. 
Identification and characterization of these MX-binding cellular partners will provide the molecular basis for the 
alternate mechanisms that influence MX’s cytotoxicity. Here, we describe the design and synthesis of a MX-biotin 
probe (MXP) and negative control (MXP-NC) that can be used to define MX’s cellular targets and expand our 
understanding of the proteome-wide profile for MX. In proof of concept studies, we used MXP to successfully 
isolate a recently identified protein-binding partner of MX, RAD52, in a cell lysate pulldown with streptavidin 
beads and western blotting.   

Target identification and validation are key pillars of the drug dis-
covery process.1–3 Biochemical probes facilitate the identification of 
drug targets or additional cellular binding partners that may contribute 
to off-target effects.1,4 Such probes have driven target-based studies that 
profile drug interactions and elucidated the mechanism of action (MoA). 
These studies also guide future modification and optimization.3,5,6. 

In recent years, biotinylated-small molecule probes have had an 
immense impact on proteome-wide target profiling (Fig. 1). Examples 
include the biotinylated-resveratrol probe (Fig. 1A) generated by Chen 
et al. that led to the identification of histone deacetylase I (HDAC1) as a 
cellular target of resveratrol.7,8 Also, a biotinylated-triptolide probe 
(Fig. 1B) synthesized by Zhao et al. revealed peroxiredoxin I (Prx1) as a 
target of triptolide.9 Additional examples of biotinylated probes are 
included in Fig. 1.7–15 These probe-based studies, and many others, are 
prime examples of using chemical biology tools to study complex in-
teractions and interpret MoAs that are otherwise poorly 
understood.5,16,17. 

Mitoxantrone (MX) is a prominent anthracycline chemotherapeutic 
routinely used in oncology clinics. MX was originally approved in 1988 

for the treatment of acute myeloid leukemia (AML) and has since shown 
promise in the treatment of other hematological malignancies, such as 
acute lymphoblastic leukemia (ALL) and acute nonlymphocytic leuke-
mia (ANLL).18 Additionally, MX has shown efficacy in advanced breast 
and prostate cancers.19 The canonical MoA associated with MX is its 
capacity to intercalate DNA and stabilize the topoisomerase II cleavage 
complex.18,19 MX was engineered to be a less cardiotoxic analog of 
doxorubicin that retains its therapeutic efficacy.18,19 The divergence in 
cardiotoxicities between MX and doxorubicin is largely thought to be 
influenced by differences in membrane lipid peroxidation that generates 
reactive oxygen species that damage cardiac tissue.18,19 Another factor 
is the selective inhibition of different isoforms of topoisomerase II (α and 
β).18,19 Despite these findings, various biological assays continue to 
identify novel MX targets that may contribute to its anticancer 
activity.20–29. 

Although numerous studies have evaluated MX clinically and phar-
macologically, its prominent DNA intercalation activity associated with 
MX overshadows additional potential cellular targets in the literature.19 

Consequently, unique interactions of MX and their respective effects 
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remain to be fully elucidated. In recent years, several research groups 
have begun unraveling additional targets of MX, demonstrating its 
promiscuous nature and underscoring the limit to our understanding of 
its ‘off-target’ effects.19–29 For example, our group previously identified 
MX as an inhibitor of the protein-protein interaction between RAD52 
and the heterotrimer Replication Protein A (RPA), a promising drug 
target for homologous recombination-deficient cancers.29 This discov-
ery prompted our group to synthesize a probe that could be used to not 
only validate our previous findings but also advance the understanding 
of MX’s complex cellular interactions. It is clear that further proteomic 
profiling studies are required to fully comprehend MX’s additional 
MoAs. 

Proteomic analysis can reveal novel interactions of candidate com-
pounds or existing drugs. Several strategies can be employed to deter-
mine the proteome-wide target profile of a given compound; these 
methods are generally compound-centric or mechanism-centric.1 Pro-
teomic methods that are compound-centric typically modify the original 
compound to generate probes suitable for chemical biology studies such 
as target enrichment or fluorescent labeling of target proteins in cell 
extracts.1,2,6,16,17,30 Click chemistry is often used to generate these 
probes, and thus, has majorly contributed to the understanding target 
profiles and MoAs.5,6 The probe-isolated target proteins can be 
confirmed using western blotting or mass spectrometry. Although the 
biological probes are useful in deducing MoAs, they are challenging to 
generate since they must retain their bio-activity to be effective and 
reliable. In contrast, mechanism-centric proteomic methods analyze the 
differences in protein abundance, expression levels, post-translational 
modifications, and localization.1,3 These methods provide insight into 
the cellular consequences associated with the compound but not 
necessarily defining the initiating event, i.e., target-binding.1,3. 

Here, we focus on compound-centric chemical biology studies. 

Compound-centric studies reveal target protein profiles providing in-
sights into differing molecular mechanisms and off-target effects.1,3 This 
information can influence the continual optimization of the compound 
to increase efficacy and decrease inadvertent side effects.3,31 For 
example, we previously reported the discovery of spirocyclic analog 19 
as an inhibitor of IKKβ-mediated NF-κB activation.15,32 Subsequent 
studies using a clickable-analog 19 probe (Fig. 1G) unveiled a proteome- 
wide target profile that identified over 330 proteins that are modified by 
analog 19.14,15,33 This led to the discovery of spirocyclic dimers (SpiDs) 
as promising anticancer agents that inhibited cancer cell growth, and 
induced apoptosis through activation of unfolded protein response.33,34 

To assess MX’s selectivity for RAD52 and to define the proteome- 
wide profile of MX, we synthesized a biotinylated-MX-probe (MXP). In 
a proof-of-concept, we demonstrated that MXP indeed selectively binds 
to recombinant human RAD52 but not recombinant human RPA in 
Escherichia coli lysates that have an abundance of these two proteins. 
Compound 11, a clickable MX analog, or MXP can be used in biological 
studies to not only validate other targets of MXP but also define the 
proteome-wide target profile. 

Scheme 1 depicts the strategy used to synthesize MXP and MXP-NC. 
In brief, SN2 displacement of one of the bromine atoms in 1,5-dibromo-
pentane (1) by propargyl alcohol using sodium hydride as base yielded 
2. N-Boc protection of both nitrogen atoms of 2-((2-aminoethyl)amino) 
ethan-1-ol (3) yielded the second linker fragment 4. Under the Wil-
liamsons ether synthesis conditions, the SN2 displacement of the 
bromine atom in 2 by the hydroxyl group in 4 gave compound 5. 
Deprotection of the Boc groups in 5 resulted in the key fragment with the 
alkyne tag 6. Aluminum chloride catalyzed Friedel-Craft acylation be-
tween 4,7-difluoroisobenzofuran-1,3-dione (7) and hydroquinone (8) 
gave 1,4-difluoro-5,8-dihydroxyanthracene-9,10-dione (9) in 65% 
yield.35 The sequential ArSN2 displacement of the fluorine atoms in 9 by 

Fig. 1. Examples of biotinylated or clickable small molecule probes used for mechanistic studies.  
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compounds 6 and 3 in DMF yielded 10 and 11, respectively. The click 
reaction between alkyne tagged 11 and biotin-PEG3-azide resulted in 
the title compound, MXP as blue solid in 31% yield. A negative control, 
MXP-NC, was synthesized by SN2 displacement of bromine atom of 1- 
bromopentane (12) by propargyl alcohol followed by click reaction 
with biotin-PEG3-azide (Scheme 1). Additional information regarding 
methods and synthesis can be found in the supplementary information. 

We previously reported that MX inhibited the RPA:RAD52 interac-
tion using a high-throughput compatible FluorIA assay.29 We hypothe-
sized that a MXP could be used to determine if MX binds to RAD52 or 
RPA using a pulldown study from E. coli lysates containing the two 
proteins. Figure 2 illustrates the pulldown of RAD52 using MXP in a 

RAD52-overexpressing E. coli cell lysate with magnetic streptavidin- 
coated beads. After overnight incubation of MXP and the cell lysate at 
room temperature, the magnetic beads were added to the sample for an 
additional 1-hour incubation. The supernatant fraction was stored after 
magnetic separation, and the beads were washed three times with lysis 
(wash) buffer. Following the 5-minute incubation with elution buffer 
(0.1 M Glycine, pH 2.0), the cellular components directly interacting 
with MXP were eluted from the probe, leading to an elution fraction 
enriched with binding partners. The presence of RAD52 was observed 
via SDS-PAGE gel stained with SYPROTM Ruby dye (Fig. 2A) and vali-
dated using an automated nanocapillary-based western blot system 
(Peggy Sue by Protein Simple) (Fig. 2B and Fig. S1). Unlike MXP, the 

Scheme 1. Reagents and conditions: (i) NaH, propargyl alcohol, DMF, 0 ◦C to rt, 15 h; (ii) (BOC)2O, THF:EtOH (1:1), rt, 16 h; (iii) NaH, 2, DMF, 0 ◦C to rt, 15 h; (iv) 
4 M HCl in Dioxane, DCM, rt, 12 h; (v) AlCl3, NaCl, 200 ◦C, 2 h; (vi) 6, DIPEA, DMF, 50 ◦C, 6 h; (vii) 3, DMF, 50 ◦C, 6 h; (viii) Biotin-PEG3-azide, Sodium abcorbate, 
TBTA, CuSO4⋅5H2O, DMSO, H2O, t-BuOH, rt, 8 h; (ix) NaH, propargyl alcohol, DMF, 0 ◦C to rt, 15 h; (x) Biotin-PEG3-azide, Sodium abcorbate, TBTA, CuSO4⋅5H2O, 
DMSO, H2O, t-BuOH, rt, 8 h. 
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negative control (MXP-NC) did not bind to RAD52 (Fig. S1). To evaluate 
whether MXP would isolate RPA, we included an E. coli cell lysate 
sample spiked with 0.5 mM of purified RPA. Our SDS-PAGE results 
indicated that RAD52 was isolated in the un-spiked lysate but was not 
immediately visible in the elution from the RPA-spiked lysate. Western 
blot was used for a more sensitive evaluation of our supernatant and 
elution samples. 

Peggy Sue western blots were performed following the Protein 
Simple manufacturer’s guidelines for the 12–230 size separation kit. 
Compass software (Protein Simple) was used to analyze the data. 
Further investigation using western blot found that RAD52 was present 
in both the supernatant and elution of the RPA-spiked lysate samples 
(Fig. 2B). This indicated that the sensitivity of the SYPROTM Ruby dye 
was too low to detect RAD52 in the RPA-spiked samples for the SDS- 
PAGE gel, but levels of RAD52 were detectable via a western blot. We 
also postulate that another explanation of the decreased amount of 
RAD52 seen in the RPA-spiked sample compared to the no-spike sample 
could be resultant from the competition of MXP and RPA, resulting in 
less RAD52 pulled down by MXP (Fig. 2A). Analysis of the RPA-spiked 

samples ultimately revealed that RPA was not detected in the elution 
fraction by either the SDS-PAGE analysis or western blot, suggesting 
MXP interacts with RAD52 when disrupting the RAD52:RPA protein–-
protein interaction. 

Collectively, we have successfully synthesized a mitoxantrone-probe 
that holds potential as a valuable tool, along with a negative control 
(MXP-NC) for studying the chemical biology of MX. The preliminary 
pulldown experiment validated that MXP indeed interacts with cellular 
components and can isolate a target protein. After identifying MX as an 
inhibitor of the RAD52:RPA interaction in a previous study, the direct 
mechanism of interaction still remained unclear.29 These new findings 
utilizing MXP provide clarity that MXP interacts directly with RAD52 
and not RPA, though more studies are needed to characterize this 
interaction. Moreover, these results potentially support the observed 
reduction in RAD52-dependent single-strand annealing and decreased 
RAD52 foci formation in cells upon MX-treatment.29 Taken together, 
these studies implicate RAD52-inhibition as a promising complementary 
MoA of MX in targeting homologous-recombination deficient cancers. 
Though MX has predominantly been thought of as a topoisomerase II 
poison, recent literature demonstrates that the promiscuity of MX is 
understudied.20–28 Future studies using MXP and MXP-NC may reveal 
additional binding partners and shed light on MX’s complex cellular 
interactions, enhancing our understanding of its proteome-wide target 
profile and additional modes of action that contribute to its therapeutic 
efficacy. 
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