The Structure of Human Mitochondrial Manganese Superoxide Dismutase Reveals a Novel Tetrameric Interface of Two 4-Helix Bundles

Gloria E. O. Borgstahl,* Hans E. Parge,* Michael J. Hickey,* Wayne F. Beyer, Jr.,† Robert A. Hallewell,* and John A. Tainer* t
*Department of Molecular Biology
The Scripps Research Institute
La Jolla, California 92037
†Department of Biochemistry
Duke University Medical Center
Durham, North Carolina 27710

Summary

The 2.2 Å resolution crystal structure of recombinant human manganese superoxide dismutase, a homotetrameric enzyme that protects mitochondria against oxygen-mediated free radical damage, has been determined. Within each subunit, both the N-terminal helical hairpin and C-terminal α/β domains contribute ligands to the catalytic manganese site. Two identical 4-helix bundles, symmetrically assembled from the N-terminal helical hairpins, form novel tetrameric interfaces that stabilize the active sites. Structurally altered polymorphic variants with reduced activity, such as tetrameric interface mutant Ile-58 to Thr, may produce not only an early selective advantage, through enhanced cytotoxicity of tumor necrosis factor for virus-infected cells, but also detrimental effects from increased mitochondrial oxidative damage, contributing to degenerative conditions, including diabetes, aging, and Parkinson's and Alzheimer's diseases.

Introduction

Mitochondria consume over 90% of the cell's oxygen, and the mitochondrial respiratory chain is the source of a large flux of oxygen radicals (Chance et al., 1979). Mitochondrial DNA is especially subject to oxidative damage due to this immense oxygen metabolism, relatively inefficient DNA repair, and lack of histones (Richert et al., 1988). Within mitochondria, manganese superoxide dismutase (MnSOD) is of biological interest as a primary defense against oxidative damage (Beyer et al., 1991). MnSOD thus represents a major class of the SOD metalloenzymes, which all act to dismute toxic superoxide radicals to oxygen and hydrogen peroxide.

Superoxide is a normal byproduct of aerobic metabolism and is produced in many reactions, including oxidative phosphorylation, photosynthesis, and the respiratory burst of stimulated neutrophils and macrophages (Fridovich, 1986; Halliwell and Gutteridge, 1989). Damage inflicted by active oxygen species has been implicated in many degenerative processes, including cancer and aging (Ames, 1983; Coriutti, 1986; Floyd, 1991; Fraga et al., 1990; Harman, 1981). The rate of oxidative DNA damage has been shown to be directly related to the metabolic rate and inversely related to life span (Adelman et al., 1988).

SODs are critical components in the physiological response to oxygen toxicity and are actively investigated as potential therapeutic agents in pathological conditions related to oxidative stress, e.g., postischemic reperfusion of organs (Murohara et al., 1991; Zweier et al., 1987), lung and tissue damage (White et al., 1991; Oda et al., 1989), acute and chronic inflammation, and ionizing radiation (Halliwell et al., 1985). Recent experiments support antiaging and anticancer roles for SODs (Halliwell and Gutteridge, 1989). Increased SOD expression in Drosophila results in a small but significant increase in mean life span (Reveillaud et al., 1991). The level of SOD induced in human leukocytes by paraquat decreases with age, but increased levels of induction are correlated with longevity (Niwa et al., 1990). SODs are also involved in the pervasive bioregulatory functions of nitric oxide by preventing nitric oxide peroxidation by superoxide (Nakazono et al., 1991).

Three forms of SOD with different catalytic metal ions have distinct distributions (Beyer et al., 1991). Cu,ZnSOD occurs primarily in eukaryotes, but has also been found in bacterial pathogens. FeSOD is found in prokaryotes, and MnSOD is found in both prokaryotes and mitochondria. Fe and MnSODs share a similar α/β fold (Stallings et al., 1984) and are structurally unrelated to the Greek key β-barrel fold of Cu,ZnSOD (Tainer et al., 1982).

In vivo, Cu,ZnSOD and FeSOD are constitutively produced, but MnSOD is inducible (Hassan, 1988; Toussi, 1988). Induction of MnSOD has been observed following treatment with paraquat (Krall et al., 1988), X-radiation (Oberley et al., 1987), hyperoxia (Housset and Junod, 1981), interleukin-1 (Masuda et al., 1988), and tumor necrosis factor (Wong et al., 1989). Thus increased levels of MnSOD provide protection during periods of oxidative stress. For medical uses, MnSOD may have unique advantages. Unlike the FeSOD and Cu,ZnSOD enzymes, MnSOD does not exhibit product inhibition by hydrogen peroxide (Beyer and Fridovich, 1987). Also, MnSOD has a half-life in sera of 5–6 hr compared with 6–10 min for the Cu,ZnSOD (Gorecki et al., 1991).

The relatively long serum half-life of human MnSOD is apparently due to its assembly (Gorecki et al., 1991), suggesting the importance of its tetrameric interactions. In fact, the various SODs are distinguished according to their modes of subunit aggregation (Tainer et al., 1991). The intracellular Cu,ZnSODs are invariably dimeric. Most FeSODs are dimers, with the exception of a tetrameric FeSOD isolated from Methanobacterium Bryantii (Kirby et al., 1981). Eukaryotic MnSODs are usually tetrameric, while the prokaryotic enzymes are usually dimeric. Exceptions are the tetrameric MnSODs from the extreme thermophiles Thermus thermophilus (Sato and Nakasawa, 1976) and Thermus aquaticus (Sato and Harris, 1977).

Despite the biological importance of mitochondrial MnSOD, no crystallographic structure has been available. Establishing the three-dimensional structure of any macromolecule that has potential for human drug use is advantageous. The Cu,ZnSOD structure has allowed the design
of mutant enzymes that are more thermostable (Parge et al., 1992; McRee et al., 1990), have a longer serum half-life (Halawani et al., 1989), and are more active (Getzoff et al., 1992), demonstrating the utility of structural information for protein design. Here, we present the structure of human MnSOD at 2.2 Å resolution, highlighting the roles of specific structural elements and side chain interactions in controlling the enzyme's stability and assembly. These results implicate a polymorphic variation of the major tetramer interface residue Ile58 in defective MnSOD assembly and activity and potentially in increased mitochondrial oxidative damage contributing to autoimmune and degenerative diseases. This structure should aid future biochemical, mutagenic, and biological studies aimed at understanding the enzyme's biological function at the atomic level.

Results and Discussion

Structure Determination and Quality

Based upon the atomic structure of the human mitochondrial MnSOD tetramer determined at 2.2 Å resolution with an R factor of 17.1% (see Experimental Procedures), the 198 residues of each subunit fold into three strands of antiparallel β sheet, seven α helices, seven connecting structures (named A through J), and the N- and C-termini (Figure 1A). The excellent main-chain geometry and overall secondary structure composition are shown in a Ramachandran plot of the ϕ,ψ angles (Figure 1B). The two subunits of the crystallographic asymmetric unit pack tightly together to resemble structurally bacterial SOD dimers (Beyer et al., 1991), with both subunits participating in the formation of the two active sites (Figure 2). The two subunits are very similar in structure, as indicated by superposition of the main-chain atoms of regular secondary structural elements (root mean square deviation, 0.30 Å), of all main-chain atoms (0.33 Å), and of all atoms (0.93 Å, higher value because of side chain variation due to crystal lattice contacts).

Subunit Fold and Active Site Geometry

The subunit fold has dimensions of about 40 x 47 x 49 Å and can be divided into two distinct domains: an N-terminal helical hairpin domain and a C-terminal α/β domain, containing a three-stranded antiparallel β sheet and five α helices (Figure 3A).

The N-terminal domain is composed of residues 1-84 and is formed primarily by two long antiparallel α helices separated by a tight turn, forming a helical hairpin structure. Residues 1-10 have an extended structure and are packed against helices α1 and α2. Residue Pro-16 is a cis Pro in position three of a type V la turn. The first long helix, α1, extends from Ala-20 through Ala-50 and is bent at Ser-28. Helix α2 extends from Val-54 to Asn-80 and is bent at Pro-62. The bends in the helices give a left-handed twist to the hairpin. The C-terminus of helix α2 tightens, and the last 4 residues form 3 α hydrogen bonds. Helices α1 and α2 are joined by a type I' tight turn, forming a helical hairpin

Figure 1. Conformation of the Human Mitochondrial MnSOD Subunit

(A) Secondary structure assignment of the 198 residue human MnSOD subunit. The amino acid sequence numbers are on line 1. On line 2, @ marks the metal ligands, an asterisk indicates the 8 residues that contribute the most buried surface area to the 4-helix bundle interface, and * marks the position of the exon boundaries of the rat MnSOD gene (Ho et al., 1991). Line 3 indicates the positions of sequence polymorphisms, and line 4 indicates the sequence of normal human MnSOD in one-letter code (Beck et al., 1987; Ho and Crapo, 1990; Church, 1990; St. Clair and Holland, 1991; Wispe et al., 1989; Heckl, 1988). Secondary structure assignments are coded on line 5: H, a helix (n+4 main-chain hydrogen bonding); h, bend in a helix (one main-chain hydrogen bond broken); 3, 3_3 helix (n+3 main-chain hydrogen bonding); E, β strand; T, residues 2 and 3 of a tight turn. Line 6 shows the boundaries of the major helices (α1-α7), β strands (β1-β3), and the positions of type I, type I', and type Vα tight turns and other connecting structures (labeled A-J). (B) A Ramachandran diagram (Ramachandran and Sasisekharan, 1968) of the ϕ,ψ main-chain dihedral angles for A and B subunits (one crystallographic asymmetric unit). Gly residues are indicated by open circles and nonglycine residues by plus signs. All values lie in allowed regions. Residues Asn-142 and Lys-170 have values in the lower right quadrant and are at the second position of type I' turns.
Figure 2. C’ Trace of the Two Subunits That Form the Crystallographic Asymmetric Unit and the Dimer Interface
Stereo diagram of the C’ trace of the A and B subunits, viewed down the noncrystallographic 2-fold symmetry axis. C’ positions are periodically identified by residue number and subunit letter where space permits. The complete tetramer is generated from this crystallographic asymmetric unit by a 2-fold rotation about the crystallographic c axis, which is horizontal in this view. The dimeric asymmetric unit of the MnSOD tetramer is structurally similar to the Fe and MnSOD bacterial dimeric enzymes. The manganese ions (shaded spheres) are close to the dimer interface. The A and B subunits are intimately associated, with residues Glu-162 and Tyr-166 from one subunit contributing to the active site of the neighboring subunit.

Figure 3. Human Mitochondrial MnSOD Subunit Fold and Active Site Geometry
Stereo RIBBONS diagrams (Carson, 1991) of human MnSOD subunit fold. Manganese ions are shown as light pink spheres. Secondary structure definitions are as designated in Figure 1A. (A) MnSOD subunit colored to emphasize secondary structure and domain organization. The N-terminal domain (bottom) is made up of the blue N-terminal loop and two long purple α helices (α1 and α2). The C-terminal α/β domain (top) is composed of five blue α helices (α3-α7) and three yellow β strands (β1-β3). The pink manganese lies between the two domains. MnSOD subunits have approximate dimensions 49 × 47 × 49 Å. (B) Active site geometry of MnSOD. The trigonal bipyramidal geometry of the five manganese ligands are drawn in a ball and stick representation. Amino acids from both domains contribute to the active site, His-26 and His-74 from the N-terminal domain and Asp-159 and His-163 from the C-terminal domain. The fifth coordination site is occupied by a water molecule (blue sphere).
Figure 4. Assembly of the Human Mitochondrial MnSOD Tetramer
Stereo RIBBONS diagrams (Carson, 1991) of human MnSOD tetramer. Individual subunits are colored: A, yellow; B, green; C, blue; and D, purple. Manganese ions are shown as light pink spheres.

(A) The MnSOD tetramer viewed down the crystallographic b axis (with a vertical and c horizontal). The A/B (yellow/green) and C/D (blue/purple) dimers at the top and bottom of the figure each form a crystallographic asymmetric unit. The dimer interface (770 Å² buried) is arranged around a local molecular 2-fold symmetry axis, whereas the tetrameric assembly forms around the crystallographic 2-fold axis along the horizontal (c axis) and comprises the A/C (yellow/blue) and B/D (green/purple) 4-helix bundles (820 Å² buried) as well as the A/D (yellow/purple) and B/C (green/blue) cross-cavity interactions (190 Å² buried). The apparent central cavity is occluded (front and back) by the adjacent side chains of the cross-cavity interface. In this view the tetramer is rectangular with approximate dimensions of 60 Å wide, 79 Å high, and 79 Å deep.

(B) The MnSOD tetramer viewed down the crystallographic 2 fold axis along c (with a running diagonally from lower left to upper right and b from...
structure critical for tetramer formation. Introns, taken from the rat gene (Ho et al., 1991), occur at Gly residues between a1 and a2 and also between a2 and a3 (Figure 1A), consistent with the separate domain structure for this region.

The C-terminal domain is a mixed a/ß structure, with the central layer formed by a three-stranded antiparallel ß sheet (residues 85-198). The first two helices of the C-terminal domain (a3 and a4) are separated by Gly-102 (e = 80, w = -49; average values, see region C in Figure 1A), which causes an abrupt change in helical direction (−105°). Similarly, the C-terminal pair of helices, a3 and a7, are oriented approximately 105° to one another. Between them, in region J, Trp-181 has neither n + 3 or n + 4 helical hydrogen bonds; Asn-182 and Val-183 have 3w hydrogen bonds, and Ile-184 adopts a ß conformation. The central three-stranded antiparallel sheet has an "N-centered overhand" +1,-2x topology (Richardson and Richardson, 1990), with strands ß2 and ß3 separated by the short helical section ß5. Helix ß5 is separated from strand ß3 only by Gly-151 (µ = 62, w = −9; average values). Strand ß3 is followed by region H, a stretched helical structure with only two helical main-chain hydrogen bonds: an n + 3 hydrogen bond between 162O and 165N and an n + 4 hydrogen bond between 165O and 168N. Regions F and I are type I' turns. A single intron occurs in the C-terminal domain at Gly-151 between ß5 and ß3 (Figure 1A).

The active site manganese joins the two domains and is positioned between the helical and ß sheet structural elements (Figure 3B). Two amino acid residues from each domain, His-26 in ß1 and His-74 in ß2 from the N-terminal domain and Asp-159 in ß3 and His-163 in region H from the C-terminal domain, plus a water molecule, ligate the Mn(II) with five-coordinate trigonal bipyramidal geometry. Manganese bond lengths are −2.1 Å to each His NE2, 1.94 Å to Asp-159 O6, and 2.0 Å to the water. The four active sites of the MnSOD tetramer are grouped in pairs across the dimer interface (Figure 2) with residues Glu-162 and Tyr-166 from one subunit contributing to the active site of the neighboring subunit.

Overall Quaternary Structure
The four identical subunits (A, yellow; B, green; C, blue; and D, purple) in the human MnSOD tetramer have 222 symmetry and assemble to form three unique pairs of interfaces (Figure 4): dimer interfaces (A/D and C/B), cross-cavity interfaces (A/D and B/C), and 4-helix bundle interfaces (A/C and B/D). Each asymmetric unit of the crystal contains one dimer (Figure 2), named for its similarity to the dimeric bacterial Fe and MnSODs. Two dimers, related by the crystallographic 2-fold axis of symmetry, form the homotetramer. The 4-helix bundle interfaces, together with the much smaller cross-cavity interfaces, join the dimers to form a tetramer. The solvent-filled tunnel through the center (Figure 4C) of the tetramer is encircled by the three-stranded antiparallel ß sheets from the four subunits (Figure 5). The outside of the tetramer is encircled by the assembly of the four extended helical hairpins into two 4-helix bundles at opposite ends of the dimer. As a consequence of the central tunnel and subunit packing arrangement, the tetrameric mitochondrial MnSOD is held together almost entirely by two, rather than three, types of interfaces: the dimer contact and the 4-helix bundle contact.

In general, the participation of the dimer interface in the formation of the enzyme's active sites and of the tetrameric interface in stabilizing the helical hairpins (containing two of the manganese ligands) and in forming a larger active site channel suggests that only the tetrameric enzyme will be fully active and stable. The high thermostability of the wild-type tetrameric enzyme allows it to be purified by heat denaturation of contaminating proteins (see Experimental Procedures). The structural interactions responsible for the association of the four subunits into the active homotetrameric enzyme are described in more detail below.

Dimer Interface
The active site manganese atoms are located near the dimer interface (Figures 4A and 4B, subunits A/B [yellow and green] and C/D [blue and purple]), with residues from each subunit contributing to the metal-binding site. The dimer interactions (calculated using a 4.6 Å cutoff) involve residues from helices ß1 (21, 25, 29-30), ß2 (62-63, 65-66), and ß6 (173). turns F (142) and L (170-171), and regions D (119-121) and H (181-183, 166-167). The surface buried to a 1.6 Å radius probe (Connolly, 1983) indicates that all 20 of these residues contribute more than 5 Å² of buried surface, for a total buried surface area of 770 Å² on each subunit. In the central region, the O² of Ser-121A is hydrogen bonded across the noncrystallographic 2-fold axis of symmetry to O² of Ser-121B. Slightly further from the axis, O² of Glu-162A makes a hydrogen bond to the N of Glu-162B. Other salt bridges and hydrogen bonds that contribute to the dimer interface include O² of Glu-162A to N² of His-163B (a manganese ligand), O² of Glu-162A to N of His-163B, and N² of His-30A to O² of Tyr-166B. Each of these interactions is duplicated by the noncrystallographic 2-fold symmetry axis.

Tetrameric Assembly
The human MnSOD dimer associates into a homotetramer with dimensions of about 60 × 79 × 79 Å. The central, solvent-filled tunnel, illustrated in Figure 4C, passes through the entire tetramer and has an average radius of

lower right to upper left). In this view the tetramer is square, with approximate dimensions of 71 Å by 71 Å and 58 Å deep. The 4-helix bundle interfaces form symmetrically from pairs of helical hairpins (B/D [green/purple] in front and A/C [yellow/blue] behind) across the 2-fold symmetry axis (center).

(C) The central cavity of human MnSOD tetramer is viewed 45° from the horizontal of (B). The red molecular surface was calculated using the MS program (Connolly, 1983) with a 1.4 Å probe radius.
Figure 5. Arrangement of the Helical Hairpin and α/β Domains in the Assembled Tetramer
Stereo RIBBONS diagram viewed as in Figure 4A. Individual subunits are colored to highlight subunit domain positions in the assembled tetramer. The dominant tetrameric interaction comes from assembly of the N-terminal domains (purple helices and blue N-terminus) into two 4-helix bundles (left and right). The C-terminal domain (yellow β sheet and blue helices and loops) borders the central cavity. The dimer interfaces form across the top and bottom, and the cross-cavity interfaces form diagonally (at the front and back), in this view.

Figure 6. Electron Density and Model for the Central Residues within the CHelix Bundle Interface
A stereo diagram showing part of the central interactions of the 4-helix bundle placed in its 2F.−F, electron density (magenta contours). The model is colored as in Figure 4: A, yellow and C, blue. The view is close to the crystallographic 2-fold, which lies midway between the symmetry-related structural water molecules 201W and 201X. The α1A and α1C helices are in the foreground, and stacking interactions between these helices involve, in part, Y45A, Y45C, E42A, and E42C. Interactions between α2A and α2C are more extensive and involve, in part, residues Q57A, I58A, Q61A, L64A, Q57C, I58C, Q61C, and L64C. Two of the cross-helix interactions (between α1 and α2) involve hydrogen bonds from E42A to Q57C and E42C to Q57A. Image made using XtalView (McRee, 1992).
about three water molecules. The tetramer has an internal cavity (bordered by strand β2, as viewed in Figure 4A and Figure 5) with approximate dimensions of 15 x 25 Å at its widest point. When A/B and C/D dimers interact across the crystallographic 2-fold axis along c (Figure 4B), the cross-cavity and 4-helix bundle interfaces are formed. Therefore, each of the tetrameric interactions is duplicated by this 2-fold axis of symmetry.

In Figures 4A and 4B, residues from subunits A/D (yellow/purple) (and symmetry-related B/C [green/blue]) partially block the central cavity of the tetramer to form the small cross-cavity interface. Nine residues from secondary structural elements α3 (100–101), α4 (110), turn E (131–132), and β2 (134–137) interact with each other to bury about 190 Å² on each subunit. The N² of Arg-132A forms a hydrogen bond with the main-chain O of Leu-135D. The remaining interactions are van der Waals contacts.

In the principal tetrameric interface, the N-terminal α-helical hairpins of the A/C (yellow/blue) (and symmetry-related B/D [green and purple]; in Figures 4A and 4B) subunits assemble to form a 4-helix bundle with a left-handed twist. Twenty-four residues each contribute more than 5 Å² in this 800 Å² interface, which dominates the tetramer assembly (larger than each dimer interface that is 770 Å²). Besides the 4-helix bundle interactions, some residues from the N-terminus and from helix α5 contribute to interactions to this interface. In particular, the side chain of His-2A forms a hydrogen bond with the carbonyl oxygen of Gly-52C of turn A, and residues Pro-145A, Gln-147A, and Gly-140A of helix α5 interact with Thr-55C, Ile-58C, and Ala-59C of helix α2. The 4-helix bundle, however, forms the majority of this interface and is described in detail below.

The Intersubunit 4-Helix Bundle Interface

The 2-fold symmetric antiparallel interactions of the helical hairpins from two subunits form each of the two 4-helix bundle interfaces (see the purple helix bundles in Figure 5). This interface, which is unique to mitochondrial MnSOD, appears to be important not only for the enzyme’s assembly but also for its stability and activity. In the subunit, if the helical hairpin is not tethered by formation of the 4-helix bundle, the two ligands contributed from helices α1 and α2 will be destabilized, adversely affecting the manganese active site geometry and the surrounding active site channel (which is formed between the helical hairpins and C-terminal domains). In addition, the tetrameric interaction forms the large solvent-filled tunnel open to the active site channels (Figure 4C). The tunnel is surrounded by positively charged side chains expected to aid in the recognition of superoxide, by analogy to the Cu,ZnSOD active site structure (Getzoff et al., 1992). For example, the tetrameric association positions a ring of 11 positively charged side chains around the subunit A active site: Lys-29A, Lys-44A, Lys-51A, Lys-130C, Lys-182C, Lys-106D, Lys-108B, Lys-110B, Lys-170B, Arg-173B, and Lys-178B. Thus, the 4-helix bundle strongly influences subunit structure, active site stability and conformation, tetrameric assembly, and substrate recognition.

The central residues of the 4-helix bundle are illustrated in Figure 6 along with their electron density. Eight residues from each subunit form the core of the interface (as indicated by their large average buried surface areas given in parentheses): Ile-58 (75 Å²), Gln-61 (65 Å²), Leu-49 (61 Å²), Val-54 (57 Å²), Thr-55 (52 Å²), Tyr-45 (53 Å²), Leu-64 (50 Å²), and Ile-72 (45 Å²). In the A/C interface (yellow/blue in Figures 4A and 4B), for example, the side chains of the α1 helices of subunit A and subunit C interact in an antiparallel fashion with the crystallographic 2-fold axis of symmetry between Tyr-45A and Tyr-45C (see Figure 6). The side chains of residues Glu-42, Tyr-45, Gln-46, and Leu-49 stack across the subunit–subunit interface in an antiparallel manner (data not shown). The subunit–subunit interactions involving antiparallel contacts between helix nα2A and helix α2C are more extensive. Residues Gly-52, Val-54, Thr-55, Gln-57, Ile-58, Gln-61, Leu-64, Lys-65, Gly-68, Gly-69, and Ile-72 of helix α2 stack across the interface with the crystallographic 2-fold axis of symmetry between Gln-61A and Gln-61C. The side chain of Gln-61A forms a hydrogen bond with the carbonyl oxygen of Gln-61C across the interface (Figure 6). Cross-helix interactions are formed by residues Leu-38A and Gln-42A of helix α1 interacting with residues Gln-52C, Val-54C, and Gln-57C of helix α2 and vice versa. The O² of Gln-42A and N² of Gln-57C form a hydrogen bond. Two water molecules (about 3 Å apart), related to each other by the 2-fold axis of symmetry, are buried in the 4-helix bundle. These structural water molecules (temperature factor of 17.5 Å²) form hydrogen bonds with the O² of Tyr-45 and the N² of Gln-61 (Figure 6).

To test the apparent similarity of the two equivalent MnSOD intersubunit 4-helix bundles to 4-helix bundles found within protein subunits, one MnSOD 4-helix bundle was superimposed onto that of tobacco mosaic virus coat protein (TMVcp) (Figure 7). Unlike the helices of TMVcp, which are fairly straight, two helices of the MnSOD bundle are bent at Pro-62, limiting the optimum superposition of all four helices. When the main-chain atoms of the two straight α1 helices are superimposed (labeled A and D in Figure 7), the root mean square deviation is only 1.58 Å compared with 2.25 Å when all four helices are superimposed. Nevertheless, the overall dimensions and geometry of MnSOD intersubunit 4-helix bundles are remarkably similar to that of the TMVcp 4-helix bundle subunit folding domain.

An intersubunit 4-helix bundle assembly with symmetrical helical hairpins has been seen before in the structure of the E. coli Rop protein (Banner et al., 1987). However, the Rop protein is only 63 aa long, and the dimeric interface formed by its association into a 4-helix bundle involves the entire protein. In the MnSOD tetramer assembly, the extension of the N-terminal helical hairpins allows the formation of a stable tetrameric enzyme by using a portion of the subunit sequence.

Comparison with the Bacterial Enzyme Structures

There are four structures published for the bacterial Fe and MnSODs: T. thermophilus tetrameric MnSOD at 1.8 Å resolution (Ludwig et al., 1991), B. stearothermophilus dimeric MnSOD at 2.4 Å resolution (Parker and Blake, 1988), E. coli dimeric FeSOD at 3.1 Å resolution (Carloz et
Figure 7. Comparison of the Intersubunit 4-Helix Bundle Interface with the 4-Helix Bundle of TMVcp

MnSOD 4-helix bundle (purple) superimposed onto the 4-helix bundle of tobacco mosaic virus coat protein (green, TMVcp) (Protein Data Bank entry, 2tmv; Namba et al., 1989; Bernstein et al., 1977). Stereo diagrams of (A) side view and (B) top view. Main-chain atoms of the following residues were superimposed (root mean square deviation, 2.25 Å) in the displayed helix pairs: A, MnSOD 39–49 onto TMVcp 21–31; B, MnSOD 54–64 onto TMVcp 41–51; C, MnSOD 54–64 onto TMVcp 76–86; and D, MnSOD 39–49 onto TMVcp 119–129. The overall similarity of bundle dimensions and helix packing is apparent.

The active site region (Figure 3B) and the dimer interface (Figure 2) are structurally conserved with small variations between human MnSOD and the bacterial Mn and FeSODs. One interesting dimer interface variation involves the human MnSOD packing interactions of Phe-66A with Glu-119B compared with the similar but inverted interactions of Asn-75A with Phe-128B in the bacterial enzyme structures. The active site metals in the Mn and FeSOD structures all have four protein ligands (3 His and 1 Asp) in distorted tetrahedral geometry, which can also be described as trigonal bipyramidal when the open coor-
dination site is included. The fifth ligand water molecule (2 Å from the manganese) in human MnSOD was also observed in T. thermophilus MnSOD. In human and T. thermophilus MnSOD, the dimer interface places the two metal ions about 16.4 Å apart, and in P. ovata FeSOD they are 17.9 Å apart. In all the structures, the ligand hydrogen bonding network includes hydrogen bonds spanning the dimer interface, from a His ligand in one subunit to a Glu carboxylate in the other, such that both subunits contribute to the metal-binding site.

Tetramer formation is a characteristic of both human and thermostable bacterial MnSODs (Beyer et al., 1991), but the nature of their tetrameric assemblies is very different. The human MnSOD tetramer is more compact than that determined for T. thermophilus MnSOD, as exemplified by intermanganese distances. Manganese distances between the A/C and A/D subunits in human MnSOD are 40.7 Å and 42.0 Å, respectively, whereas T. thermophilus MnSOD has significantly longer intermanganese distances of 45.4 Å and 48.9 Å. This difference in overall tetramer size is derived from the most dramatic difference between human and T. thermophilus MnSOD subunit structure: the human MnSOD N-terminal helical hairpins. The human MnSOD tetramer interface is formed by the association of the helical hairpin N-terminal domains into closely packed, intersubunit 4-helix bundles, whereas the T. thermophilus interface involves loop regions with typical protein subunit packing interactions. Thus, the cross-cavity packing interactions that occur between nonadjacent subunits in the more compact human MnSOD tetramer do not occur in the T. thermophilus MnSOD structure.

Significance and Implications

In contrast to bacterial Fe and MnSODs, human mitochondrial MnSOD forms two interchain, 4-helix bundle, tetrameric interfaces (Figure 7), symmetrically assembled from pairs of N-terminal helical hairpins (Figure 4). Each of these helices is encoded by a separate exon, with adjacent intron-exon junctions mapping to surface loops (Figure 1A). Thus, the gene encoding the mitochondrial tetrameric enzyme may have evolved by addition of these exons to the gene for the postulated ancestral dimer. The self-assembly of helical hairpin domains into interchain 4-helix bundles could be generally applicable to the design of new, multimeric, recombinant proteins.

Structurally, the helical hairpin of human MnSOD contributes not only to the tetramer assembly (Figure 4) but also to the conformation of the active site, located between the helical hairpin and α/β domains (Figure 3). The sequence of the helical hairpin is highly conserved in mitochondrial MnSODs (Smith and Doellittle, 1992), supporting its functional importance. Yet, human MnSOD is polymorphic (Figure 1A), and one naturally occurring variant in the helical hairpin (Ile-58 to Thr) has been found in two of six cDNA libraries (Wispé et al., 1989; Hu and Gropu, 1985). Within the 4-helix bundle interface (Figure 6), hydrophobic residue Ile-58 is the largest contributor of buried surface area, contacting 6 other residues. Replacement with hydrophilic Thr-58 should destabilize the 4-helix bundle, leading to decreased enzyme activity and reduced tetramer stability. Furthermore, the detrimental effect of each single-site Thr-58 mutation within the 4-helix bundle should be quadrupled in the tetrameric enzyme due to the duplication and 2-fold internal symmetry of the 4-helix bundle. Preliminary biochemical experiments support this structure-based prediction: the Thr-58 MnSOD variant is significantly less active and less thermostable (M. Boissinot, M. J. Johnson, J. A. Tainer, and R. A. Hallewell, unpublished data). Moreover, significant variation in specific enzyme activity and overall activity is found in human liver samples (Deutsch et al., 1991), demonstrating biologically relevant MnSOD variability.

MnSOD variants may exhibit balanced polymorphism like that of human hemoglobin, in which a structurally and functionally defective single-site mutant (sickle cell hemoglobin) (Ingram, 1957) is maintained in the population due to a compensatory advantage (malarial resistance) (Allison, 1956; Stine et al., 1992). Two-fold reduced MnSOD activity significantly increases the cytotoxic action of tumor necrosis factor by increasing mitochondrial superoxide levels (Wu et al., 1989), and tumor necrosis factor kills virus-infected cells (Nain et al., 1990). An unfortunate side effect of an initial selection for MnSOD variants with reduced activity and increased protection against acute viral infections might be a predisposition for diseases, such as diabetes (Malaisse et al., 1982; Crouch et al., 1981), that are associated with oxidative damage. Mitochondria are especially sensitive to oxidative damage, and mitochondrial DNA damage is implicated in aging and degenerative conditions, including Alzheimer's and Parkinson's diseases (Taylor, 1992; Wallace, 1992), as well as in diabetes (Rallinger et al., 1992). MnSOD with decreased activity is found in leukocytes of diabetics (Nath et al., 1984), and SOD is protective of healthy pancreatic islet tissue transplanted into diabetic animals (Nomikos et al., 1989). In addition, juvenile onset diabetes may be triggered by viral infection in genetically susceptible individuals (Yoon, 1990), and tumor necrosis factor (generated in response to infections) is cytotoxic to islet cells (Campbell et al., 1988). Thus, reduced MnSOD activity may confer an early selective advantage by enhancing cellular defenses against viral diseases and cancers at the cost of reduced protection against long-term oxidative damage. This new three-dimensional structure of human MnSOD should provide improved understanding of the structural basis for SOD activity and for the effect of polymorphic sequence variation on mitochondrial SOD structure and function.

Experimental Procedures

Expression and Purification

The full-length MnSOD cDNA was isolated from a library of human kidney cDNAs cloned into bacteriophage lambda (Beli et al., 1988), using the mouse MnSOD cDNA (Hallewell et al., 1986) as a hybridization probe. The sodAoD8 strain of E. coli (Nevig et al., 1987), which lacks the endogenous Mn and FeSODs, was used to avoid the possibility of heterotetramer formation between the human enzyme and the endogenous E. coli enzymes. Cells transformed with an E. coli expression vector containing the cDNA (pCHMnSOD1lacI) produced up to 25% of total soluble cell protein as human MnSOD, yielding approximately 40 mg of purified enzyme per liter of culture. Culture conditions and the procedure for inducing the tac promoter of pCHMnSOD1lacI are provided.
in the E. coli sodAsodB strain were as previously described (Hallewell et al., 1985). This was followed by a rapid protein purification procedure (Beck et al., 1988) as follows: after cell lysis, soluble cell proteins were heated at 80°C for 60 min; precipitated proteins were removed by centrifugation; and the supernatant was purified on DE52 and CM52 columns, consecutively. We have purified to homogeneity large amounts of wild-type recombinant human MnSOD that has normal specific activity and appears indistinguishable from the native enzyme purified from human tissue (W. F. Beyer, G. I. Bell, R. A. Hallewell, and L. Fridovich, unpublished data).

Cryystalization

Several crystal forms of recombinant human MnSOD crystals were grown using polyethylene glycol (PEG) 400, 600, 4000, and 10000, ammonium sulfate, potassium phosphate, and citrate as precipitating agents. The protein concentration for these experiments was 10 mg/ml huff in 50 mM phosphate (pH 7.8). Crystals obtained with 2–2.3 M potassium phosphate at pH 7.0 grew within 7 days as long, hexagonal rhombs (0.3 × 0.3 × 1.0 mm²). These crystals belong to space group P6₁2₁2₁ (or P6₃22) with cell dimensions of a = b = 0.9 Å, c = 240.3 Å. On the basis of crystal symmetry, cell dimensions, and a molecular weight of 22,000, a Vm of 2.58 Å³ per dalton was obtained for one cimer in the asymmetric unit, corresponding to a solvent content of 52% (Matthews, 1968). Crystals grown from 1.5 M citrate at pH 8.5 (0.1 × 0.5 × 0.2 mm²) appeared within 7 days and were morphologically similar to the phosphate-grown crystals. Crystals grown from 15% PEG 600 required 30 days and grew as long thin needles (0.1 × 1.0 mm²), while those from 20% PEG 4000, 10% 2-propanol at pH 7.5, or from 21.5% PEG 10000 at pH 7.5 appeared within 7 days as rosettes of thin needles. Crystals obtained with ammonium sulfate as precipitant grew as thin plates (0.06 × 0.1 × 0.1 mm²), and precession photography showed diffuse Bragg reflections. After one round of refinement, the resolution was extended to 2.2 Å, and another round of water addition resulted in an R factor of 17.1%. The final atomic model consists of 3146 nonhydrogen protein atoms, 2 manganese atoms, and 189 water molecules. The overall deviations from ideal geometry were 0.016 Å for bond distances and 3.3° for bond angles. The protein temperature factor of water molecules was 30.0 Å² (standard deviation, 13.2) with a minimum of 8.0 Å² and a maximum of 59.7 Å². Coordinates were submitted to the Protein Data Bank (code 1ABM).

Acknowledgments

This work was supported by the National Institutes of Health grant GM38345. We thank Elizabeth Getzoff, Duncan Hammee, Irwin Fridovich, Maurice Botselt, Michel Pique, and Brian Crane for their intellectual contributions. We thank Dagmar Ringe and Barry Stoddard for the P. ovalis FeSOD coordinates and Martha Ludwig and William Stallings for the 1. thermophilus MnSOD coordinates.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 USC Section 1734 solely to indicate this fact.

Received June 30, 1992; revised August 12, 1992.

References


Boyer, W. F., Jr., and Fridovich, I. (1967). Effect of hydrogen peroxide...
on the iron-containing superoxide dismutase of Escherichia coli. Biochemistry 26, 1251-1257.


with the inhibitor azide. Protein Eng. 4, 113-119.


